Thermalization and Criticality on an Analog-Digital Quantum Simulator


Journal article


T. Andersen, N. Astrakhantsev, Amir H. Karamlou, Julia Berndtsson, J. Motruk, Aaron Szasz, Jonathan A. Gross, T. Westerhout, Yaxing Zhang, E. Forati, Dario Rossi, B. Kobrin, A. D. Paolo, A. Klots, I. Drozdov, V. D. Kurilovich, A. Petukhov, L. Ioffe, A. Elben, Aniket Rath, V. Vitale, B. Vermersch, R. Acharya, Laleh Aghababaie Beni, K. Anderson, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, Brian Ballard, Joseph C. Bardin, A. Bengtsson, A. Bilmes, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, David A. Browne, Brett Buchea, B. Buckley, D. Buell, T. Burger, B. Burkett, N. Bushnell, Anthony Cabrera, J. Campero, Hung-Shen Chang, Zijun Chen, B. Chiaro, Jahan Claes, A. Cleland, J. Cogan, R. Collins, P. Conner, W. Courtney, A. Crook, Sayan Das, D. Debroy, Laura De Lorenzo, A. Barba, S. Demura, M. Devoret, Paul Donohoe, A. Dunsworth, Clint Earle, A. Eickbusch, Aviv Moshe Elbag, M. Elzouka, C. Erickson, L. Faoro, R. Fatemi, V. S. Ferreira, L. F. Burgos, A. Fowler, B. Foxen, S. Ganjam, Robert Gasca, W. Giang, C. Gidney, D. Gilboa, M. Giustina, R. Gosula, A. Dau, Dietrich Graumann, Alex Greene, S. Habegger, Michael C. Hamilton, Monica Hansen, M. Harrigan, S. D. Harrington, Stephen Heslin, P. Heu, Gordon Hill, Markus R. Hoffmann, Hsin-Yuan Huang, Trent Huang, A. Huff, W. Huggins, S. Isakov, E. Jeffrey, Zhang Jiang, Cody Jones, Stephen P. Jordan, Chaitali Joshi, P. Juhás, D. Kafri, Hui Kang, K. Kechedzhi, T. Khaire, T. Khattar, M. Khezri, M. Kieferov'a, Seon Kim, A. Kitaev, P. Klimov, Alexander N. Korotkov, F. Kostritsa, J. Kreikebaum, D. Landhuis, Brandon W. Langley, P. Laptev, K. Lau, L. L. Guevel, Justin Ledford, Joonho Lee, Kenny Lee, Y. Lensky, B. Lester, Wing Yan Li, A. Lill, Wayne Liu, W. Livingston, A. Locharla, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Ashley Maloney, S. Mandrà, Leigh S. Martin, O. Martin, Steven Martin, Cameron Maxfield, J. McClean, M. McEwen, Seneca Meeks, K. Miao, A. Mieszala, Sebastian Molina, S. Montazeri, A. Morvan, R. Movassagh, C. Neill, A. Nersisyan, M. Newman, A. Nguyen, M. Nguyen, Chia-Hung Ni, M. Niu, William D. Oliver, K. Ottosson, A. Pizzuto, R. Potter, Orion Pritchard, Leonid P. Pryadko, C. Quintana, M. Reagor, D. M. Rhodes, Gabrielle Roberts, C. Rocque, Eliot Rosenberg, N. Rubin, N. Saei, K. Sankaragomathi, K. Satzinger, H. Schurkus, C. Schuster, M. Shearn, A. Shorter, N. Shutty, V. Shvarts, V. Sivak, J. Skruzny, Spencer Small, W. C. Smith, Sofia Springer, G. Sterling, Jordan Suchard, M. Szalay, A. Sztein, D. Thor, A. Torres, M. M. Torunbalci, Abeer Vaishnav, S. Vdovichev, B. Villalonga, C. V. Heidweiller, Steven Waltman, Shannon X. Wang, Theodore White, Kristi Wong, B. Woo, C. Xing, Z. Yao, P. Yeh, Bicheng Ying, J. Yoo, Noureldin Yosri, G. Young, Adam Zalcman, Ningfeng Zhu, N. Zobrist, H. Neven, R. Babbush, S. Boixo, J. Hilton, E. Lucero, A. Megrant, J. Kelly, Yu Chen, V. Smelyanskiy, G. Vidal, P. Roushan, A. Lauchli, D. A. Abanin, Xiao Mi
2024

Semantic Scholar ArXiv
Cite

Cite

APA   Click to copy
Andersen, T., Astrakhantsev, N., Karamlou, A. H., Berndtsson, J., Motruk, J., Szasz, A., … Mi, X. (2024). Thermalization and Criticality on an Analog-Digital Quantum Simulator.


Chicago/Turabian   Click to copy
Andersen, T., N. Astrakhantsev, Amir H. Karamlou, Julia Berndtsson, J. Motruk, Aaron Szasz, Jonathan A. Gross, et al. “Thermalization and Criticality on an Analog-Digital Quantum Simulator” (2024).


MLA   Click to copy
Andersen, T., et al. Thermalization and Criticality on an Analog-Digital Quantum Simulator. 2024.


BibTeX   Click to copy

@article{t2024a,
  title = {Thermalization and Criticality on an Analog-Digital Quantum Simulator},
  year = {2024},
  author = {Andersen, T. and Astrakhantsev, N. and Karamlou, Amir H. and Berndtsson, Julia and Motruk, J. and Szasz, Aaron and Gross, Jonathan A. and Westerhout, T. and Zhang, Yaxing and Forati, E. and Rossi, Dario and Kobrin, B. and Paolo, A. D. and Klots, A. and Drozdov, I. and Kurilovich, V. D. and Petukhov, A. and Ioffe, L. and Elben, A. and Rath, Aniket and Vitale, V. and Vermersch, B. and Acharya, R. and Beni, Laleh Aghababaie and Anderson, K. and Ansmann, M. and Arute, F. and Arya, K. and Asfaw, A. and Atalaya, J. and Ballard, Brian and Bardin, Joseph C. and Bengtsson, A. and Bilmes, A. and Bortoli, G. and Bourassa, A. and Bovaird, J. and Brill, L. and Broughton, M. and Browne, David A. and Buchea, Brett and Buckley, B. and Buell, D. and Burger, T. and Burkett, B. and Bushnell, N. and Cabrera, Anthony and Campero, J. and Chang, Hung-Shen and Chen, Zijun and Chiaro, B. and Claes, Jahan and Cleland, A. and Cogan, J. and Collins, R. and Conner, P. and Courtney, W. and Crook, A. and Das, Sayan and Debroy, D. and Lorenzo, Laura De and Barba, A. and Demura, S. and Devoret, M. and Donohoe, Paul and Dunsworth, A. and Earle, Clint and Eickbusch, A. and Elbag, Aviv Moshe and Elzouka, M. and Erickson, C. and Faoro, L. and Fatemi, R. and Ferreira, V. S. and Burgos, L. F. and Fowler, A. and Foxen, B. and Ganjam, S. and Gasca, Robert and Giang, W. and Gidney, C. and Gilboa, D. and Giustina, M. and Gosula, R. and Dau, A. and Graumann, Dietrich and Greene, Alex and Habegger, S. and Hamilton, Michael C. and Hansen, Monica and Harrigan, M. and Harrington, S. D. and Heslin, Stephen and Heu, P. and Hill, Gordon and Hoffmann, Markus R. and Huang, Hsin-Yuan and Huang, Trent and Huff, A. and Huggins, W. and Isakov, S. and Jeffrey, E. and Jiang, Zhang and Jones, Cody and Jordan, Stephen P. and Joshi, Chaitali and Juhás, P. and Kafri, D. and Kang, Hui and Kechedzhi, K. and Khaire, T. and Khattar, T. and Khezri, M. and Kieferov'a, M. and Kim, Seon and Kitaev, A. and Klimov, P. and Korotkov, Alexander N. and Kostritsa, F. and Kreikebaum, J. and Landhuis, D. and Langley, Brandon W. and Laptev, P. and Lau, K. and Guevel, L. L. and Ledford, Justin and Lee, Joonho and Lee, Kenny and Lensky, Y. and Lester, B. and Li, Wing Yan and Lill, A. and Liu, Wayne and Livingston, W. and Locharla, A. and Lundahl, Daniel and Lunt, Aaron and Madhuk, Sid and Maloney, Ashley and Mandrà, S. and Martin, Leigh S. and Martin, O. and Martin, Steven and Maxfield, Cameron and McClean, J. and McEwen, M. and Meeks, Seneca and Miao, K. and Mieszala, A. and Molina, Sebastian and Montazeri, S. and Morvan, A. and Movassagh, R. and Neill, C. and Nersisyan, A. and Newman, M. and Nguyen, A. and Nguyen, M. and Ni, Chia-Hung and Niu, M. and Oliver, William D. and Ottosson, K. and Pizzuto, A. and Potter, R. and Pritchard, Orion and Pryadko, Leonid P. and Quintana, C. and Reagor, M. and Rhodes, D. M. and Roberts, Gabrielle and Rocque, C. and Rosenberg, Eliot and Rubin, N. and Saei, N. and Sankaragomathi, K. and Satzinger, K. and Schurkus, H. and Schuster, C. and Shearn, M. and Shorter, A. and Shutty, N. and Shvarts, V. and Sivak, V. and Skruzny, J. and Small, Spencer and Smith, W. C. and Springer, Sofia and Sterling, G. and Suchard, Jordan and Szalay, M. and Sztein, A. and Thor, D. and Torres, A. and Torunbalci, M. M. and Vaishnav, Abeer and Vdovichev, S. and Villalonga, B. and Heidweiller, C. V. and Waltman, Steven and Wang, Shannon X. and White, Theodore and Wong, Kristi and Woo, B. and Xing, C. and Yao, Z. and Yeh, P. and Ying, Bicheng and Yoo, J. and Yosri, Noureldin and Young, G. and Zalcman, Adam and Zhu, Ningfeng and Zobrist, N. and Neven, H. and Babbush, R. and Boixo, S. and Hilton, J. and Lucero, E. and Megrant, A. and Kelly, J. and Chen, Yu and Smelyanskiy, V. and Vidal, G. and Roushan, P. and Lauchli, A. and Abanin, D. A. and Mi, Xiao}
}

Abstract

Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics.


Share



Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in